Evaluating product search and recommender systems for E-commerce environments

نویسندگان

  • Pearl Pu
  • Li Chen
  • Pratyush Kumar
چکیده

Online systems that help users select the most preferential item from a large electronic catalog are known as product search and recommender systems. Evaluation of various proposed technologies is essential for further development in this area. This paper describes the design and implementation of two user studies in which a particular product search tool, known as example critiquing, was evaluated against a chosen baseline model. The results confirm that example critiquing significantly reduces users’ task time and error rate while increasing decision accuracy. Additionally, the results of the second user study show that a particular implementation of example critiquing also made users more confident about their choices. The main contribution is that through these two user studies, an evaluation framework of three criteria was successfully identified, which can be used for evaluating general product search and recommender systems in E-commerce environments. These two experiments and the actual procedures also shed light on some of the most important issues which need to be considered for evaluating such tools, such as the preparation of materials for evaluation, user task design, the context of evaluation, the criteria, the measures and the methodology of result analyses. This research was supported by the Swiss National Science Foundation. P. Pu (!) · L. Chen Human Computer Interaction Group, School of Computer and Communication Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland e-mail: [email protected] L. Chen e-mail: [email protected] P. Kumar Business Administration, Darden Graduate School of Business, University of Virginia, Charlottesville, USA e-mail: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

یک سامانه توصیه‎گر ترکیبی با استفاده از اعتماد و خوشه‎بندی دوجهته به‎منظور افزایش کارایی پالایش‎گروهی

In the present era, the amount of information grows exponentially. So, finding the required information among the mass of information has become a major challenge. The success of e-commerce systems and online business transactions depend greatly on the effective design of products recommender mechanism. Providing high quality recommendations is important for e-commerce systems to assist users i...

متن کامل

Integrating Collaborative Filtering and Matching-based Search for Product Recommendations

Currently, recommender systems (RS) have been widely applied in many commercial e-commerce sites to help users deal with the information overload problem. Recommender systems provide personalized recommendations to users and, thus, help in making good decisions about which product to buy from the vast amount of product choices. Many of the current recommender systems are developed for simple an...

متن کامل

Improving Accuracy of Recommender Systems using Social Network Information and Longitudinal Data

The rapid development of technology, the Internet, and the development of electronic commerce have led to the emergence of recommender systems. These systems will assist the users in finding and selecting their desired items. The accuracy of the advice in recommender systems is one of the main challenges of these systems. Regarding the fuzzy systems capabilities in determining the borders of us...

متن کامل

Integrating Collaborative Filtering and Matching-based Search for Infrequently Purchased Product Recommendation

Currently, recommender systems (RS) have been widely applied in many commercial e-commerce sites to help users deal with the information overload problem. Recommender systems provide personalized recommendations to users and, thus, help in making good decisions about which product to buy from the vast amount of product choices. Many of the current recommender systems are developed for simple an...

متن کامل

A Novel Product Filtering and Product Recommendation System to Optimize the Search Space and Sparsity in Real Time Ecommerce Environment

Online Product recommended system is the most effective prediction system in the e-commerce websites. Customized/Automated recommendation systems can assist the users to find relevant products within short time in large e-commerce databases. Several recommendation techniques have been proposed to filter the user interested products and to optimize e-commerce sales from different vendors. With t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electronic Commerce Research

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2008